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The leading edge of a localized, insoluble surfactant monolayer, advancing under
the action of surface-tension gradients over the free surface of a thin, viscous, fluid
layer, behaves locally like a rigid plate. Since lubrication theory fails to capture the
integrable stress singularity at the monolayer tip, so overestimating the monolayer
length, we investigate the quasi-steady two-dimensional Stokes flow near the tip,
assuming that surface tension or gravity keeps the free surface locally flat. Wiener–
Hopf and matched-eigenfunction methods are used to compute the ‘stick-slip’ flow
when the singularity is present; a boundary-element method is used to explore the
nonlinear regularizing effects of weak ‘contaminant’ surfactant or surface diffusion.
In the limit in which gravity strongly suppresses film deformations, a spreading
monolayer drives an unsteady return flow (governed by a nonlinear diffusion equation)
beneath most of the monolayer, and a series of weak vortices in the fluid ahead of
the tip. As contaminant or surface diffusion increase in strength, they smooth the tip
singularity over short lengthscales, eliminate the local stress maximum and ultimately
destroy the vortices. The theory is readily extended to cases in which the film deforms
freely over long lengthscales. Limitations of conventional thin-film approximations
are discussed.

1. Introduction
The study of the spreading of surfactant monolayers on thin, viscous, horizontal

fluid layers is motivated by numerous applications, ranging from respiratory mechan-
ics (Grotberg 1994) to industrial coating and drying processes (e.g. O’Brien 1993;
La Due, Muller & Swangler 1996). Spreading flows are driven by surface-tension
gradients arising either from non-uniform concentration distributions of surfactant
monolayers, or from the non-uniform thickness of an ultra-thin oil slick on an aque-
ous substrate. The majority of models are based upon lubrication theory, which yields
coupled evolution equations for the surfactant distribution and the film thickness
(Borgas & Grotberg 1988). These equations can incorporate a number of different
effects that influence spreading rates and film deformation, including surface diffu-
sion, surface viscosity, capillarity, surface contamination by a pre-existing surfactant
species, van der Waals forces, surfactant solubility, gravity and inertia; recent reviews
of the field are given by Jensen (1995) and Grotberg & Gaver (1996). Significant
analytical progress has been possible because many unsteady spreading flows are
asymptotically self-similar at large times (Jensen & Grotberg 1992; Espinosa et al.
1993; Jensen 1994).
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Much of the interest in these flows focuses on the behaviour of the leading edge of
a localized insoluble monolayer, which in the absence of surface diffusion behaves like
an advancing rigid plate. Accordingly thin-film theory, incorporating Marangoni and
viscous effects alone, predicts a discontinuity in shear stress and film height (Borgas &
Grotberg 1988), representing a transition between an undisturbed film (of height H∗,
say) and Couette flow beneath the advancing rigid monolayer, where the film locally
has height 2H∗. This shock-like structure may be smoothed over some lengthscale
X∗ by forces (such as gravity or capillarity) that smooth the fluid layer, leaving a
jump in shear stress, or by those that smooth the surfactant distribution and thus
also the fluid layer (such as surface diffusion or surface contamination). Some of the
corresponding transition regions were investigated by Jensen & Grotberg (1992) in the
limit H∗ � X∗ � L∗(t∗), where L∗ is the monolayer length at time t∗: the assumption
X∗ � L∗(t∗) allowed the use of matched asymptotic expansions to compute quasi-
steady ‘inner’ solutions in an otherwise unsteady analysis; the assumption H∗ � X∗
was required because these calculations represented short-wave limits of a long-wave
(lubrication) theory. Local Stokes-flow solutions for the transition regions associated
with surface diffusion or contaminant in the limit X∗ � H∗ (regarding the fluid layer
as infinitely deep) have been determined by Harper (1992).

Despite its success and widespread use, lubrication theory is unable to describe
a fundamental feature of surfactant-spreading flows, namely that at the advancing
tip of a localized, non-diffusing monolayer there is an integrable (r−1/2) singularity
in shear stress, pressure and vorticity; here r is the distance from the singularity
(Carrier & Lin 1948; Harper 1992). The primary objective of this study is to remedy
this deficiency in existing thin-film models, by considering in detail the region of
asymptotic non-uniformity at the monolayer’s leading edge. We shall show that, in
general, this requires consideration of a local two-dimensional, quasi-steady Navier–
Stokes flow. Fortunately, in many practical circumstances, restoring forces such as
gravity and surface tension are sufficiently strong to act over lengthscales much longer
than H∗, ensuring that the free surface is locally horizontal, even though there may
be substantial film deformation elsewhere. Indeed, even in the absence of restoring
forces, on the shortest lengthscales near the singularity the free surface must be locally
planar (i.e. have continuous slope, Michael 1958; Tayler 1973), although in principle it
is possible for the free surface to have a coincident integrable singularity in curvature
(Schultz & Gervasio 1990). Since a monolayer typically slows as it spreads, inertial
effects may be significant near the leading edge during the early stages of spreading
(Jensen 1995), whereas viscous effects dominate at later times. In the present paper
we use a Stokes-flow approximation to describe the later-time flow; in the second part
of this study (Jensen 1998), high-Reynolds-number asymptotics are used to describe
key features of the flow near the monolayer tip at earlier times.

When the monolayer-tip singularity is present, the local Stokes flow has similarities
with the ‘stick-slip’ die-swell problem of a viscous jet leaving a nozzle (Richardson
1970; Trogdon & Joseph 1980, 1981; see also Salamon et al. 1995 and references
therein), with certain crack-propagation problems in linearly elastic media (e.g. Foote
& Buchwald 1985), with the thermocapillary-driven flow beneath a stationary mono-
layer (Carpenter & Homsy 1985), with entry flows beneath plane slider bearings (e.g.
Malvano & Vatta 1998) and (as we shall show) it is identical to the problem of
viscous flow past a semi-infinite plate moving steadily down the centre of a channel.
Solutions of the latter problem, which is linear but with mixed boundary conditions,
can be obtained by the Wiener–Hopf technique (Graebel 1965; his solution was later
corrected by Porter & Dore 1974 and others, e.g. Kim & Chung 1984; Davis &
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Abrahams 1996). To demonstrate some of the more striking features of this flow,
we have recomputed the solution (in § 3 below) with the numerically more efficient
method of matched biorthogonal eigenfunction expansions (e.g. Trogdon & Joseph
1980, 1981; Schultz & Gervasio 1990), using the Wiener–Hopf method to identify
details such as the strength of the singularity. We show for example that, in the limit
in which the gravitational restoring force is very strong, the advancing monolayer
drives ahead of itself a series of weak recirculating vortices (of the type described by
Moffatt 1964), the intensity of which decays rapidly over an O(H∗) distance from the
monolayer tip. For a monolayer of length L∗(t∗)� H∗, the effect of the singularity is
felt over horizontal lengthscales X∗ = O(H∗), yielding an O(H∗) viscous correction to
the monolayer length (given in equation (6.2) below).

A useful comparison can be drawn between the advancing tip of a localized
monolayer and the motion of an advancing contact line of a fluid over an otherwise
dry solid surface, at which a non-integrable stress singularity arises if a no-slip
boundary condition is imposed (Dussan V. 1979). The singularity in the latter case
is typically relieved either by imposing an ad hoc slip condition or by allowing
for the existence of an ultra-thin precursor film. Although the weaker singularity
in the surfactant-spreading problem allows a self-consistent flow to be computed,
this singularity too is readily eliminated by weak perturbations. Either weak surface
contamination (by pre-existing surfactant) ahead of the monolayer or weak surface
diffusion smooths the tip singularity over some lengthscale X∗, but thereby renders the
local Stokes-flow problem nonlinear. We therefore use a boundary-element method
(BEM) to link the asymptotic results of Harper (1992) (for weak contaminant, with
X∗ � H∗) and lubrication theory (for stronger contaminant, with X∗ � H∗). It is
shown for example that the vortices ahead of the monolayer vanish abruptly once
the level of contaminant exceeds a critical value. Weak surface diffusion is shown to
act in a similar manner.

At present, there is limited experimental confirmation of many of the existing the-
oretical predictions of surfactant-spreading flows. Experiments are hampered by the
difficulty of depositing a monolayer on a thin film without introducing unwanted flow
disturbances, which may induce film rupture, for example (Kheshgi & Scriven 1991;
Gaver & Grotberg 1992). Further, for all but ultra-thin layers, gravitational effects
dominate relatively early during the spreading process, suppressing film disturbances,
generating a reverse flow near the lower boundary (Pimputkar & Ostrach 1980; Gaver
& Grotberg 1990, 1992) and ultimately returning the free surface to the horizontal.
A further aim of the present study is therefore to extend existing models to the
practically significant regime in which the fluid layer is almost flat along its entire
length. In this limit, a single nonlinear diffusion equation ((2.9a), below) governs most
of the surfactant distribution; (2.9a) has similarity solutions sharing scalings similar
to the coupled evolution equations arising when the surface deforms freely (Jensen &
Grotberg 1992), so that a planar monolayer strip again spreads with L∗(t∗) ∝ t∗1/3 to
leading order, for example. Away from the leading edge, spreading is driven predom-
inantly by an unsteady ‘return flow,’ familiar from studies of thermocapillary flows
in long slots (e.g. Sen & Davis 1982): the flow is nearly horizontal, with a forward
stress-driven component near the free surface, and a backward pressure-driven com-
ponent beneath. The return flow streamlines cannot be ‘closed’ beneath the tip of a
localized monolayer without consideration of short-lengthscale effects, however.

The model is outlined in § 2, where it is shown how a restricted class of Navier–
Stokes flows in a rectangular domain constitute formal ‘inner’ problems for a large
family of surfactant-spreading flows. We discuss the stick-slip Stokes-flow problem
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in § 3, and the corresponding effects of weak contaminant and surface diffusion are
treated in § 4 and § 5. Inertial effects, and their interaction with those of contami-
nant, are explored in Part 2 (Jensen 1998). The main conclusions of this study are
summarized in § 6.

2. The model
Consider a stationary fluid layer of density ρ∗, viscosity µ∗ and initially uniform

thickness H∗ lying on a flat, horizontal, impermeable plane, in the presence of
a vertical gravitational field g∗. An insoluble surfactant monolayer is deposited
on the free surface over some lengthscale substantially larger than H∗, with an
initial concentration of typical magnitude Γ ∗0 . A ‘contaminant’ monolayer may be
present elsewhere on the free surface, having weak, uniform concentration γΓ ∗0 , where
0 6 γ � 1. The surface tension of the surfactant-covered interface is assumed to be
a linearly decreasing function of monolayer concentration, so that σ∗ = σ∗0 − AΓ ∗ ≡
S∗(S − Γ ); here Γ ∗ is the surfactant concentration and Γ = Γ ∗/Γ ∗0 is its non-
dimensional equivalent. The surfactant activity A∗ = −dσ∗/dΓ ∗ is assumed to be
a positive constant, an approximation that is valid for dilute gaseous monolayers.
The spreading coefficient S∗ = A∗Γ ∗0 represents the scale of surface tension reduction
by the monolayer; it is this surface-tension difference, distributed along the length
of the deposited monolayer, that drives a spreading flow. It is offset by S∗∞ =
γA∗Γ ∗0 , the surface-tension reduction due to the weak contaminant. The surface
tension of the interface when clean, σ∗0 , is represented by the dimensionless parameter
S = σ∗0/S

∗ > 1.
We define a velocity scale U∗ = S∗/µ∗, a length scale H∗, a time scale T ∗ = H∗/U∗

and a pressure scale µ∗U∗/H∗. Gravity is represented through a parameter (a form
of Bond number) G = ρ∗g∗H∗2/S∗. For a typical terrestrial experiment with a 1 mm
layer of water, ρ∗ ≈ 1 g cm−3, g∗ ≈ 103 cm s−2, S∗ ≈ 10 g s−2, H∗ ≈ 0.1 cm and
µ∗ ≈ 10−2 g cm−1 s−1, so that G ≈ 1. Thus G is appreciable for all but ultra-thin films.
Surface diffusion of the surfactant is represented by D = D∗/(U∗H∗), where D∗ is a
surface diffusivity, assumed constant; since D∗ 6 10−5 cm2 s−1 for typical surfactants
(Agrawal & Neuman 1988), D 6 10−7 in a standard experiment, so the effects of
contaminant, represented by γ, will generally be stronger. The Reynolds number of
the flow, R = ρ∗H∗S∗/µ∗2, is 104 for the parameter values given above; for the present
we allow R to remain moderately large in a sense to be defined below.

Using the scales given above, we consider two-dimensional planar flows by intro-
ducing Cartesian coordinates (x, y) and a velocity field u = (u, v), with the fluid layer
lying between the rigid plane at y = 0 and a free surface at y = h(x, t); the undis-
turbed layer has h = 1. The flow is governed by the non-dimensional Navier–Stokes
equations,

∇ · u = 0, R [ut + (u · ∇)u] = −∇p+ ∇2u−Gŷ, (2.1a,b)

where p is the fluid pressure and ŷ is the unit vector in the y-direction; at the planar
boundary u(x, 0) = 0. Above the fluid is an inviscid gas at zero pressure, so the
free-surface stress and kinematic boundary conditions at y = h(x, t) are

n · T · n = (S− Γ )κ, t · T · n = −∇sΓ , ht + uhx = v. (2.2a–c)

Here n ≡ (−hx, 1)/∆ and t ≡ (1, hx)/∆, where ∆ ≡ (1 + h2
x)

1/2, are the unit normal
and tangent vectors to the free surface respectively; the interfacial curvature is
κ = −∇s · n = hxx/∆

3, where ∇s ≡ (I − nn) · ∇ is the surface gradient operator. The
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stress tensor is T = −pI + ∇u + ∇uT . The normal and tangential stress conditions
(2.2a, b) at y = h(x, t) may then be written

−p+
2

∆2

[
(h2
x − 1)ux − hx

(
uy + vx

)]
= (S− Γ )

hxx

∆3
, (2.3)

(1− h2
x)(uy + vx)− 2hx(ux − vy) = −∆Γx. (2.4)

Writing us = (us, vs) = (I − nn) · u, the surfactant transport equation is

Γt + ∇s · (usΓ ) + (∇s · n) (n · u)Γ = D∇2
sΓ . (2.5)

We consider flows that satisfy h → 1, Γ → γ as x → ∞; a range of upstream
conditions at x = 0 are allowable.

The standard lubrication-theory approximation of (2.1)–(2.5) is briefly reviewed in
§ 2.1 below. We then consider two distinct limits: that in which G � 1 (§ 2.2), so that
the film is almost flat over the length of the monolayer; and that in which restoring
forces are relatively weak (G = 0, Appendix A), so that the film deforms significantly
over lengthscales long compared to the film depth but short compared to the length
of the monolayer. The latter limit was considered by Jensen & Grotberg (1992);
the former ‘flat-film’ limit, although somewhat simpler, has previously been largely
overlooked. In each case, we show how the presence or near-presence of a stress
singularity at the monolayer’s leading edge, which arises in the limit γ → 0, D → 0,
implies that the local flow is governed, in general, by a family of steady Navier–
Stokes problems, defined in a long, rectangular domain, parameterized by the local
film height. Late in spreading, when viscous effects dominate inertia, a rescaling given
in § 2.3 shows that only a single canonical Stokes-flow problem need be considered,
parameterized by γ and D. Solutions to this Stokes-flow problem are given in §§ 3–5
below; the Navier–Stokes problem for a ‘flat’ film is examined using boundary-layer
theory in Part 2 (Jensen 1998).

2.1. Thin-film approximations for long, spreading monolayers

Thin-film approximations of (2.1)–(2.5) have been derived in detail elsewhere (e.g.
Borgas & Grotberg 1988; Gaver & Grotberg 1990; Jensen & Grotberg 1992), so here
we simply present the resulting evolution equations. Let X̄ = εx represent a long
length, corresponding to the length of the spreading monolayer, and T = ε2t a slow
time, where 0 < ε � 1. We suppose that G and S are O(1), that R = o(1/ε2), and
that D and γ are O(ε). To leading order in ε, the pressure in the fluid is hydrostatic,
so that p = G(h − y), and viscous stresses (represented by uyy) balance horizontal
pressure gradients and surface (Marangoni) stresses. The flow at leading order is then
governed by the coupled evolution equations

hT + QX̄ = 0, Q = − 1
3
Gh3hX̄ − 1

2
h2ΓX̄, (2.6a)

ΓT + qX̄ = 0, q = − 1
2
GΓh2hX̄ − hΓΓX̄. (2.6b)

The streamfunction for this flow in the frame of the wall is ψ = 1
6
GhX̄y2(y − 3h) −

1
2
ΓX̄y

2, and the corresponding velocity field is u = (εψy,−ε2ψX̄). Capillary forces and

surface diffusion, of O(ε2S) and O(D) respectively, do not arise at leading order
in this approximation, although they were retained in composite expansions used in
earlier models (Gaver & Grotberg 1990; Jensen & Grotberg 1992). Likewise, the
downstream boundary condition becomes h → 1, Γ → 0 as X̄ → ∞, since weak
contaminant is negligible at this order. The leading edge of the monolayer, within the
resolution of the long lengthscale, is at X̄ = L(T ), say, so that Γ = 0 for X̄ > L(T ).
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As X̄ → L(T )± with G = O(1), continuity of the fluxes Q and q demands that there
be jumps in gradient of h and Γ across X̄ = L(T ) given by

1
12
Gh3h−X̄ −

1
2
hLT = 1

3
Gh3h+

X̄
, hΓ−X̄ + LT + 1

2
Gh2h−X̄ = 0 (2.7a,b)

where h+
X̄

(h−
X̄

) is the limiting value of hX̄ as X̄ → L with X̄ > L (X̄ < L). Since a
spreading monolayer slows as it spreads, the hydrostatic restoring force (represented
by the terms proportional to G in (2.6)) becomes increasingly powerful and film
deformations are ultimately suppressed, so that h(L,T ) approaches 2 at early times,
falling to 1 at late times (Gaver & Grotberg 1990). Meanwhile, a gravity-driven
disturbance to the film propagates ahead of the slowly advancing monolayer tip, and
a region of reversed flow develops along y = 0 beneath the monolayer. The limits
T � 1 and T � 1 in (2.6) with G = O(1) are therefore well represented respectively
by the limits G � 1 and G � 1 with T = O(1). We consider these two limits in
more detail in § 2.2 and Appendix A respectively; § 2.3 below applies also to the case
G = O(1) with T = O(1).

2.2. Strong restoring forces: the flat-film limit

Assuming G � 1, we pose an expansion that is valid for the region beneath the
monolayer, (h, Γ ) = (1, Γ0) + G−1(h1, Γ1) + o(G−1), with (Q, q) = (Q0, q0) + o(1). At
leading order (2.6) yields Q0 = − 1

3
h1X̄ − 1

2
Γ0X̄ and q0 = − 1

2
Γ0h1X̄ − Γ0Γ0X̄ . Since

hT = O(G−1), we must have Q0X̄ = 0, so if Q0 = 0 at X̄ = 0, then Q0 = 0 everywhere
beneath the monolayer, representing a balance between forward surface-driven flow
and gravitationally-driven reverse flow. Thus

h1 =H(T )− 3
2
Γ0, q0 = − 1

4
Γ0Γ0X̄ (2.8a,b)

where H(T ) can be determined by considering the flow disturbance ahead of the
monolayer; in Appendix B we show that for a monolayer of fixed mass (i.e. fixed
total concentration) H = O((GT )−1/2), so in this particular case H does not strictly
appear in (2.8a) at this order, although we retain it below for completeness. Further,
it follows that

Γ0T = 1
4

(Γ0Γ0X̄)X̄ , ψ(X̄, y) ∼ − 1
4
Γ0X̄(y3 − y2). (2.9a,b)

The surfactant distribution is therefore governed by a single nonlinear diffusion
equation (2.9a), the late-time analogue of (2.6); a model equation of this form was
proposed by Jensen (1995) and an analogous equation for non-diffusing soluble
surfactant was given by Thess, Spirn & Jüttner (1997). The linearized form of (2.9a),
in which Γ0 varies weakly around a uniform mean value, was obtained by Dimitrov
et al. (1978). The leading-order streamfunction (2.9b) has the simple form of a return
flow.

For a smooth, monotonically decreasing surfactant distribution, with Γ0 � ε
everywhere, the resulting spreading flow may be described uniformly by (2.9); the
flow has closed streamlines, with forward motion in the upper third of the fluid layer
and a reverse flow beneath it, as illustrated for a typical Γ0-distribution in figure
1. Where the free surface is being stretched (Γ0X̄X̄ < 0), fluid is drawn upwards
towards the free surface; where the surface is being compressed, there is downward
displacement of fluid. The free surface rises gently along the length of the flow region
(see (2.8a)), providing a hydrostatic pressure gradient to drive the reverse flow. This
picture may become asymptotically non-uniform if Γ0 = O(ε) anywhere, however,
since then the flow may vary over lengthscales that are too short for lubrication
theory to remain valid.
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Figure 1. A spreading monoloyer on a flat film, for which Γ0 � ε everywhere, showing the
return-flow streamfunction (2.9b) for a typical concentration distribution Γ0. The surface velocity is
− 1

4
Γ0X̄ .

Such a difficulty arises for a localized monolayer spreading over a clean interface.
In this important limit, similarity solutions of (2.9a) can be constructed. A spreading

monolayer strip, for example, for which
∫ L

0
Γ0 dX̄ = M = constant and Γ0 = 0 in

X̄ > L(T ), is given by the well-known Pattle–Barenblatt solution (e.g. Pattle 1959)

Γ0(X̄, T ) =
2

3T

(
L2 − X̄2

)
, 0 6 X̄ < L(T ) =

(
9
4
MT

)1/3
. (2.10a,b)

Like the analogous fixed-mass solution with G = 0 (the spreading-strip solution in
Jensen & Grotberg 1992), this monolayer spreads like T 1/3, although it is (9/48)1/3 ≈
57% of the length it has when the film can deform freely, because steeper surface-
tension gradients are required to drive the reverse flow.

The exact solution (2.10) illustrates how, at the leading edge of an advancing
localized monolayer, lubrication theory predicts the existence of an abrupt jump in
shear stress (i.e. in −Γ0X̄). More generally, if the leading edge lies at X̄ = L(T ), so
that the monolayer tip advances at a slow speed (in (x, t)-variables) V = εLT , the
local solution of (2.9a) is

Γ0 ∼
{
−4LT (X̄ − L) ≡ −4V

[
x− (L/ε)

]
for X̄ → L(T ),

0 for X̄ > L(T ).
(2.11)

This thin-film approximation therefore fails to capture a smooth transition at X̄ =
L(T ) between the return flow beneath the monolayer (2.9b) and the undisturbed
film ahead of it; the local Navier–Stokes problem must instead be considered (see
§ 2.2.1 below). Before doing so, however, we note that if ε� γ � 1, the downstream
boundary condition Γ → 0 as X̄ → ∞ (given after (2.6)) may be replaced by Γ → γ,
and then the jump in shear stress implicit in (2.11) can be smoothed by contaminant
over a long x-lengthscale γ/V : setting Γ0 = γG(ζ), X̄ = L(T ) + γζ/LT , (2.9a) reduces
at leading order to −Gζ = 1

4
(GGζ)ζ which, with G → 1 as ζ → ∞, implies that

Gζ = 4[(1/G)− 1], so that

G+ log(G− 1) = 4(ζ0 − ζ), ψ ∼ − 1
4
LTGζ(y

3 − y2) (2.12a,b)

for some ζ0 (see figure 2). As |ζ| → ∞, (2.12) matches with (2.11) at leading order
for γ � 1. This ‘inner’ solution is the flat-film analogue of the contaminant transition
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Figure 2. The lubrication-theory solution (2.12a) with ζ0 = 0 for a contaminant transition region
on a flat film, which may smooth the jump in shear stress described in (2.11); the shear stress −Gζ
is proportional to the surface velocity; −G is proportional to the pressure in the fluid layer and the
displacement of the nearly-flat free surface.

region for a deforming interface given in Jensen & Grotberg (1992). Since (2.12)
is based on lubrication theory, however, it becomes invalid once γ = O(ε); the
generalization of this solution to smaller values of γ is given in §4 below.

2.2.1. The Navier–Stokes flow at the tip of a monolayer on a flat film

To explore the transition (2.11), we move to the frame of the monolayer’s leading
edge by setting x = (L/ε) + x̃ and seek quasi-steady solutions as ε → 0, noting that
this frame moves slowly with speed V = O(ε). The inner limit of the outer solution
(2.11) has

Γ (x̃) ∼
{
−4V x̃
0,

p(x̃, y) ∼
{
G(1− y) +H+ 6V x̃, x̃→ −∞
G(1− y) +H, x̃→∞,

(2.13)

with h ∼ 1+p(x̃, 1)/G. We rescale (2.1)–(2.5), setting p(x, y, t) = G(1−y)+H+V p̃(x̃, y),
u(x, y, t) = V ũ(x̃, y), Γ (x, t) = VΓ̃ (x̃), and set

R̃ = RV = o(1/ε), γ̃ = γ/V = O(1), D̃ = D/V = O(1). (2.14a–c)

We then expand in powers of 1/G � 1, using (p̃, ũ, Γ̃ ) = (p̃0, ũ0, Γ̃0) + o(1) and

expressing the boundary location as h = 1 + [H+ V h̃1(x̃)]/G+ o(G−1), which yields
the following Navier–Stokes problem defined in −∞ < x̃ < ∞, 0 6 y 6 1:

∇̃ · ũ0 = 0, R̃
[
−ũ0x̃ + (ũ0 · ∇̃)ũ0

]
= −∇̃p̃0 + ∇̃2ũ0, ũ0(x̃, 0) = 0. (2.15a–c)

Here ∇̃ ≡ (∂/∂x̃, ∂/∂y). The free-surface boundary conditions, with the dependent
variables Taylor-expanded about y = 1, are

ṽ0 = 0, ũ0y = −Γ̃0x̃, −Γ̃0x̃ + (ũ0Γ̃0)x̃ = D̃Γ̃0x̃x̃. (2.16a–c)

Integrating (2.16c), assuming Γ̃0 → γ̃ as x̃ → ∞, and applying the normal stress
condition (2.3), we have on y = 1

Γ̃0(1− ũ0) + D̃Γ̃0x̃ = γ̃, h̃1 = p̃0 + 2ũ0x̃. (2.17a,b)

With S = O(1), the capillary term in the normal stress condition is O(S/G) and so
it is negligible. In the far field the flow must match on to the external lubrication
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theory solution (2.13). With ũ0 = (ψ̃y,−ψ̃x̃), we require

Γ̃0 ∼
{
−4x̃
γ̃,

p̃0 ∼
{

6x̃
0,

ψ̃ ∼
{

(y3 − y2) for x̃→ −∞,
0 for x̃→∞.

(2.18a–c)

Equations (2.15)–(2.18) will be solved for R̃ � 1 in § 3–§ 5 below and for 1� R̃ � 1/ε
in Part 2 (Jensen 1998).

2.3. The canonical Stokes flow at the leading edge of a monolayer

When the film is constrained to be almost flat everywhere under strong gravity (§ 2.2),
and when it can deform freely under surface tension alone (Appendix A), a local
analysis of the flow near the monolayer tip yields two different ‘inner’ Navier–Stokes
problems (see (2.15)–(2.18) and Appendix A respectively). In the limit R̃ → 0, we
show here that these reduce to a single Stokes flow, which also describes a much
wider class of problems, including the cases when G = O(1) with T = O(1) in (2.6),
when gravity has a component in the x-direction (He & Ketterson 1995), and when
h(L,T ) > 2, such as when a hole closes in a monolayer (Jensen 1994). The only
constraint is that the free surface at the monolayer tip varies over a lengthscale long
compared to the fluid depth.

Suppose the monolayer tip advances slowly with speed V = O(ε). In the frame
of the tip, using ‘inner’ variables defined in § 2.2.1 but with arbitrary film height
h(L,T ) = h̃ and flux Q(L,T ) = VQ̃, lubrication theory shows that beneath the rigid
portion of the monolayer tip (at the upstream end of the inner region, with x̃→ −∞),
the streamfunction and the flux satisfy

ψ̃(x̃, y) ∼ y3

h̃3

[
h̃− 2Q̃

]
+
y2

h̃2

[
−h̃+ 3Q̃

]
, Q̃ ∼ − h̃

3

12
p̃x̃ +

h̃

2
, (2.19a,b)

so that ψ̃(x̃, h̃) = Q̃, ψ̃y(x̃, h̃) = 1, ψ̃(x̃, 0) = ψ̃y(x̃, 0) = 0. The surfactant concentration

locally satisfies Γ̃ ∼ 2h̃−2(3Q̃ − 2h̃)x̃. The local pressure gradient p̃x̃ in (2.19) is a
constant determined by restoring forces acting over long lengthscales. Just ahead of
the monolayer (as x̃→∞), where the interface is free of tangential stress,

ψ̃(x̃, y) ∼ Q̃

2

[
−y

3

h̃3
+

3y2

h̃2

]
, Q̃ ∼ − h̃

3

3
p̃x̃ (2.20a,b)

so that ψ̃(x̃, h̃) = Q̃, ψ̃yy(x̃, h̃) = 0, ψ̃(x̃, 0) = ψ̃y(x̃, 0) = 0. The pressure gradient in
(2.20) generally takes a different value to that in (2.19). If the flow ahead of the
monolayer tip is quasi-steady (as is the case in Appendix A, for example), Q̃ = h̃− 1
and we recover the upstream and downstream streamfunctions ψ±(y; h̃), where

ψ−(y; h) = (2− h)
(
y3

h3
− 3y2

2h2

)
+
y2

2h
, ψ+(y; h) = − 1

2
(h− 1)

(
y3

h3
− 3y2

h2

)
.

(2.21a,b)

Some corresponding velocity profiles are shown in figure 3. The complete range of
such transitions can in principle arise under various flow conditions; of particular
interest are the cases h = 1 (see (2.18c)) and h = h0 ≈ 1.6839 (Appendix A). The
quasi-steady assumption fails if, for example, an unsteady gravity-driven disturbance
advances ahead of the monolayer with h̃ > 1, and then the more general case
(2.19)–(2.20) applies.

To find the Stokes flow and surfactant distribution connecting (2.19) and (2.20), we
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Upstream Downstream
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0

1
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y

u (y; h)

ψy
–(y; h) ψy

+(y; h)

Figure 3. Velocity profiles in the frame of the solid boundary, given by (2.21), either side of the
leading edge of a monolayer for h = 1, 1.25, 1.5, 1.75 and 2: upstream (left) the surface is rigid,
advancing with unit speed; downstream (right) the free surface is stress-free. In each case the
horizontal flux is h− 1.

define a rescaled streamfunction Ψ (X,Y ) by

ψ̃(x̃, y) =
Q̃

2

[
−y

3

h̃3
+

3y2

h̃2

]
+ (h̃− 3

2
Q̃)Ψ (X,Y ), x̃ = h̃X, y = h̃Y . (2.22a–c)

The pressure transforms according to p̃ = −3h̃−3Q̃x̃+ (h̃− 3
2
Q̃)h̃−2P . Then, in −∞ <

X < ∞, 0 6 Y 6 1, Ψ satisfies

∇4Ψ = 0, Ψ (X, 0) = 0, ΨY (X, 0) = 0, Ψ (X, 1) = 0 (2.23a–d )

where

Ψ (X → −∞, Y ) ∼ Y 3 − Y 2, Ψ (X →∞, Y )→ 0. (2.24a,b)

The free-surface boundary conditions (cf. (2.16), (2.17)) are

ΨYY (X, 1) = −GX, ΨY (X, 1) = 1 +
D̂GX − γ̂

G
, G(X →∞)→ γ̂, (2.25a–c)

where Γ̃ (x̃) = [(h̃− 3
2
Q̃)/h̃]G(X), γ̃ = [(h̃− 3

2
Q̃)/h̃]γ̂ and D̃ = (h̃− 3

2
Q̃)D̂. Note that in

the flat-film limit γ̂ ≡ γ̃ and D̂ ≡ D̃. (We have assumed for simplicity that Γ̃ → γ̃ as
x̃→∞, whereas strictly γ̃ will be altered slightly from its value at infinity by the flow
ahead of the monolayer tip.) Equations (2.23)–(2.25) are solved in §§ 3–5; the scaled
streamfunction Ψ is exactly that arising in the flat-film problem described in § 2.2.1.

3. The stick-slip leading-edge Stokes flow
We consider in this section the singular limit of (2.23)–(2.25) (or (2.15)–(2.18) with
R̃ = 0) in which there is no contaminant ahead of the monolayer and surface diffusion
is negligible, before introducing these effects in § 4 and § 5.

If D̂ = 0 and γ̂ = 0, then (2.23)–(2.25) reduce to a stick-slip problem for which

ΨY (X < 0, 1) = 1, ΨY Y (X > 0, 1) = 0. (3.1a,b)



Surfactant-driven thin-film flows. Part 1. 283

In the neighbourhood of the monolayer’s leading edge the streamfunction is singular,
having the local form (Michael 1958; Richardson 1970; Harper 1992)

Ψ ∼ Y − 1 + Λr3/2 sin θ sin 1
2
θ, |X| � 1, |1− Y | � 1, (3.2)

for some constant Λ, where r = [X2 + (1 − Y )2]1/2, 0 6 θ 6 π, θ = 0 along Y = 1,
X < 0 and θ = π along Y = 1, X > 0. Thus along Y = 1, as |X| → 0, we have (3.1)
and

ΨYY (X < 0, 1) ∼ Λ(−X)−1/2, ΨY (X > 0, 1) ∼ 1− ΛX1/2. (3.3a,b)

From the surface stress distribution we can compute the monolayer concentration
using (2.25a), so that G ∼ 2Λ(−X)1/2 as X → 0− and G ∼ −4X + Υ as X → −∞, for
some constant Υ given by

Υ =

∫ 0

−∞
[ΨYY (X, 1)− 4] dX. (3.4)

This implies that the monolayer’s leading edge lies an X-distance 1
4
Υ upstream of

the location predicted by thin-film theory, i.e. the quasi-steady monolayer x-length
correction is 1

4
Υh(L,T ) (see § 2.3). Assuming that the pressure satisfies P → 0 as

X →∞, then P ∼ 6X +Θ as X → −∞ where the constant Θ is given by

−Θ =

∫ 0

−∞
[ΨYY Y (X, 0)− 6] dX +

∫ ∞
0

ΨYY Y (X, 0) dX. (3.5)

The method of matched eigenfunction expansions (Appendix C), in which truncated
series expansions for the streamfunction in X > 0 and X < 0 (C 4) are patched across
X = 0, provides a relatively simple and direct technique for determining the majority
of the flow governed by (2.23), (2.24) and (3.1), although it fails to resolve the details
near the singularity. Numerical results obtained with this method are shown in figures
4–6. Application of the Wiener–Hopf technique (Appendix D; Kim & Chung 1984)
yields the significant constants in the flow (see for example (D 8)),

Λ =
√

8/π, Υ = 4Ω, Θ = −6Ω, Ω ≈ 0.20943. (3.6a–d )

Eigenfunction expansions for each half of the flow can also be derived by the Wiener–
Hopf method, but since the coefficients involve slowly converging infinite products a
more direct method of solution is appropriate.

The streamfunction (figure 4a) shows the return-flow structure far upstream, which
drives a line of weak vortices ahead of the monolayer, the largest of which is shown.
This is exactly the streamfunction appropriate to the flat-film problem of § 2.2; for
cases in which Q̃ > 0 in § 2.3 (such as that shown in figure 11 below), the recirculation
is swamped by the mean flux. The horizontal component of the velocity field (figure
5a) shows the surface velocity profile, and in particular the high degree of surface
compression (UX < 0) just ahead of the monolayer tip. The figure also shows how the
return-flow velocity profile decays rapidly to zero essentially within 2 film depths of
X = 0. Computations of the the vorticity and pressure distributions (figures 4b and
5b) cannot resolve the details of the stress singularity, but are good approximations
of the solution elsewhere. They show that although ω = −∇2Ψ = 0 along the free
surface ahead of the monolayer, vorticity can diffuse a short distance ahead of X = 0,
and that the pressure has a surprisingly complex distribution in this region.

The tangential stress ΨYY (X, 1) (figure 6a) is singular as X → 0− (see (3.3a)), and
is non-monotonic in X < 0, having a local minimum value of approximately 3.98
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Figure 4. The streamfunction Ψ (X,Y ) (a) and vorticity distibution −∇2Ψ (b) of the stick-slip flow;
the monolayer lies along X < 0, Y = 1. One vortex is shown in (a), the largest contour value within
it is 1.5× 10−5. In (b), the vorticity increases linearly from −2 to +4 far upstream; a few contours
are clustered around the zero level; the singularity is evident beneath the monolayer tip at (0, 1).
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Figure 5. (a) The horizontal component of the velocity field U = ΨY (X,Y ); a few contours
are clustered around U = 0 to demonstrate the solution’s structure for X > 0. (b) The pressure
distribution P (X,Y ).



Surfactant-driven thin-film flows. Part 1. 285

10

8

6

4

2

0

–2

–2 –1 0 1 2

(a)

10

8

6

4

2

0

–2 –1 0 1 2

(b)

X

X

WYY (X, 1)

WYY (X, 0)

Figure 6. The tangential (a) and normal (b) stresses along Y = 0 (dashed) and Y = 1 (solid).
The straight line in (b) is −6X. The solid line in (b), turned upside down, gives the shape of the
free-surface perturbation h̃1 for a monolayer spreading on a flat film (see (2.17)).

at X ≈ −0.82. The huge variation in stress at the free surface is strongly localized;
in comparison, the tangential stress at the lower boundary rises smoothly from a
minimum value of approximately −2.01 near X ≈ −0.86 up to zero as X increases.
Similar stress distributions arise in the related problem of a flow past a stationary
splitter plate in a channel (Badr et al. 1985). In the neighbourhood of the singularity
the normal stress −P − 2ΨXY at the free surface falls smoothly (figure 6b), reaching
zero a short distance downstream of the monolayer’s leading edge. In the flat-film
case (§ 2.2.1) using (2.17), the solid curve in figure 6(b) turned upside down gives the
shape of the free-surface perturbation h̃1, which rises smoothly to a uniform value,
reaching its maximum value roughly 1.5 film depths ahead of the monolayer tip. The
normal stress on the lower boundary is weakly non-monotonic, having a minimum
value of −0.049 near X = 0.85.

The shape of the interface near the monolayer tip in the flat-film case (figure 6b)
is to be contrasted to the closely-related die-swell problem in which a jet leaving
a nozzle has been predicted to have a singular curvature distribution when surface
tension is present (Schultz & Gervasio 1990). No such singularity arises in the case of
a spreading monolayer, presumably because different kinematic boundary conditions
apply in the two problems. For a spreading monolayer the entire interface can deform
in the vertical direction, and there is no difficulty in the interface having small but
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finite slope in the neighbourhood of the monolayer tip (at X = 0). In the die-
swell problem the free-surface slope exiting the die may be non-zero, but the die is
constrained to be horizontal.

Figure 6(b) also confirms the prediction of the Wiener-Hopf analysis (see (3.5),
(3.6)) that, as X → −∞, P ∼ 6(X −Ω); similarly, G ∼ −4(X −Ω). We have therefore
been able to compute O(1) corrections to the asymptotic boundary conditions for a
monolayer on a flat film in (2.17), i.e. p̃0 ∼ 6(x̃ − Ω), Γ̃0 ∼ −4(x̃ − Ω), which again
indicate how lubrication theory over-predicts the monolayer length in this case by
a distance Ω. Finally, if the only restoring force acting on the interface is surface
tension, a simple rescaling of the normal stress distribution along Y = 1 in figure
6(b), following (2.22), can be used to smooth the jump in pressure gradient in figure
11(b) below.

4. The effects of weak contaminant in Stokes flow
A small amount of contaminant on the free surface ahead of the monolayer

eliminates the stress singularity. Here we examine the resulting Stokes flow in the
neighbourhood of the monolayer’s leading edge, first by considering (2.23)–(2.25) with

D̂ = 0, γ̂ > 0. For γ̂ � 1 the long-wavelength result (figure 2) is recovered. We link
this with Harper’s (1992) asymptotic solution for 0 < γ̂ � 1 (recalled in § 4.2 below)
by solving the full nonlinear problem numerically using a boundary-element method
(§ 4.1). However, we first examine the far-field asymptotic behaviour of (2.23)–(2.25),
since this is necessary if the numerical solution domain is to be truncated at finite
values of X.

Far upstream, for −X � max(γ̂, 1), an asymptotic expansion of (2.23)–(2.25) yields

G(X) ∼ −4X − γ̂ log(−X), Ψ (X,Y ) ∼ (Y 3 − Y 2)

(
1 +

γ̂

4X

)
, (4.1a,b)

consistent with (2.12); it indicates that for γ̂ > 0 the shear stress ΨYY (X, 1) ∼ 4+(γ̂/X)
lies beneath its asymptotic value of 4 far upstream.

The solution for X → ∞ is determined as follows. Set G = γ̂(1 + εg(X)), for
some ε � 1, g = O(1), and put Ψ = εΦ. After linearizing the free-surface boundary
conditions, (2.23)–(2.25) yield ∇4Φ = 0 subject to

Φ(X, 0) = 0, ΦY (X, 0) = 0, Φ(X, 1) = 0, γ̂ΦXY (X, 1) + ΦYY (X, 1) = 0.

(4.2a–d )

An eigenfunction expansion can be constructed, as in Appendix C, by setting
Φ(X,Y ) =

∑∞
n=0 Ane

−ωnXE(Y ;ωn), where the eigenvalues ωn have positive real part
and the eigenfunctions are given by (C 1). The mixed boundary condition (4.2d) im-
plies that the ωn are the roots of EY Y (1, ω) − γ̂ωEY (1, ω) = 0, which from (C 3) is
equivalent to

γ̂(ω2 − sin2 ω)− (2ω − sin 2ω) = 0. (4.3)

Some roots of (4.3) are plotted in figure 7. There is one purely real eigenvalue ω0, which
satisfies ω0 ∼ 4/γ̂ as γ̂ → ∞ (corresponding to a return flow (2.12)), and a sequence
of complex eigenvalues ωn, n = 1, 2, . . . , with increasing real parts, corresponding to
vortices. For γ̂ � 1 these roots correspond to those of a rigid interface (EY (1, ω) = 0);
for γ̂ � 1, they approach those of a stress-free interface (EY Y (1, ω) = 0). For γ̂ = 2/tn,
where tan tn = tn and t1 ≈ 4.49341, the purely real eigenvalue ω0 coalesces with the
pair ωn; for all other values of γ̂ the pair ωn has non-zero imaginary part. As γ̂
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Figure 7. The dependence of the real parts of the eigenvalues satisfying (4.3) on γ̂.

decreases, ω0 moves up the real axis, jumping abruptly as it passes through these
critical points (figure 7). The first such transition represents a sudden qualitative
change in the flow structure: for γ̂ > 2/t1 ≈ 0.445, the dominant eigenvalue at large
X is ω0, representing the closure of a return flow (as in figure 1); for γ̂ < 2/t1,
the dominant eigenvalue is ω1, indicating that the flow drives recirculating vortices
similar to those shown in figure 4(a).

4.1. Numerical results using the boundary-element method

The boundary-element method (BEM) for the Stokes equations exploits the fact that
the velocity vector at a point, U (X ), can be expressed in terms of line integrals
involving the velocities and stresses at boundaries:

Uk(X ) =

∫
S

Ui(Y )Wik(X ,Y )dSY −
∫
S

τi(Y )Vik(X ,Y )dSY , (4.4)

where

Vik(X ,Y ) = − 1

4π

(
δik log |X − Y | − (Xi − Yi)(Xk − Yk)

|X − Y |2

)
and

Wik(X ,Y ) = − 1

π

(Xi − Yi)(Xj − Yj)(Xk − Yk)
|X − Y |4 nj(Y ).

Here S is the boundary surface and τi = {T }ijnj is the stress vector. If X ∈ S , then
Uk(X ) is replaced with CikUi(X ) (Cik = 1

2
δik where the interface is smooth) to take

into account the jump in stress at the free surface.
We implemented this method using the same discretization as in Halpern & Gaver

(1994). The solution domain was truncated, and the resulting rectangular domain
had its boundary divided into N 3-point elements; the velocity and stress fields
were approximated as quadratic polynomials in terms of a local coordinate system.
Equation (4.4) was then replaced by a system of N linear equations

Ȟw̌ = Ǧť, (4.5)
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Figure 8. BEM results with γ̂ = 0.1 (dot-dashed), 0.2 (dashed), 0.5 (dotted) and 1 (solid): (a)
the surfactant distribution G(X); (b) the surface shear stress −GX(X); (c) surface compression
−ΨXY (X, 1); (d) surface normal stress.

where w̌ and ť denote the velocity and stress vectors at each node point. The elements
of matrices Ȟ and Ǧ were computed using methods described in Halpern & Gaver
(1994). The linear system (4.5) was solved for the unknown velocities and stresses
using Gaussian elimination.

To solve (2.23)–(2.25), the following iterative procedure was used. Given an initial
approximation to the surfactant distribution (e.g. from (2.12)), conditions ťX = −GX
and V = −ΨX = 0 were imposed along Y = 1, so that the unknowns were the hori-
zontal velocity and normal stress components. These were determined by solving (4.5).
A new approximation for G was obtained by integrating (2.25b) numerically using a
Runge–Kutta scheme. This procedure was repeated until a converged solution for G
was obtained. At the downstream boundary the dominant terms in the eigenfunction
expansion of (4.2) were used; at the upstream boundary the horizontal velocity was
prescribed upstream using (4.1). Typically N = 150 elements proved adequate.

BEM computations of (2.23)–(2.25) with D̂ = 0 are presented in figure 8 for
0.1 6 γ̂ 6 1. The shear stress distribution (figure 8b) is strongly peaked for γ̂ = 0.1,
but decreases monotonically for γ̂ = 1 (over a longer lengthscale), approaching the
lubrication theory solution (2.12); this is reflected in the surfactant distribution (figure
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Figure 9. The effect of weak contaminant on the singularity: (a) shows the surfactant and velocity
distributions g = (2/φ)1/2 (solid) and u = (φ/2)1/2 (dotted, see (4.6)), with asymptotes as indicated;
the shear stress −g′ has a peak upstream of the region of maximum surface compression u′.
(b) Comparison of boundary-element solutions (solid) with the asymptotic solution (dashed), for
γ̂ = 0.03.

8a), which develops an inflection point as γ̂ falls. The surface velocity gradient (figure
8c) shows a strong region of surface compression at the monolayer tip; when γ̂ = 1, it
has a maximum value of 0.570 which differs from the value predicted by lubrication
theory (0.593, using (2.12a)) by less than 4 %. The numerics confirm that the vortices
vanish when γ̂ = 2/t1. The normal stress distribution (figure 8d) is only weakly
dependent on γ̂, corresponding closely to the stick-slip distribution in figure 6(b).
The free surface shape is therefore not significantly affected by the degree of surface
contamination at low Reynolds numbers. The peak in shear stress vanishes for some
γ̂ very close to that at which the downstream vortices vanish; this relationship is
considered in more detail in figure 10 below.

4.2. Very weak contaminant

The structure of the stress peak in figure 8(b) which is present for 0 < γ̂ � 1 can
be described using the local Stokes-flow solution of Harper (1992). Contaminant
influences the stick-slip flow of § 3 profoundly in a small inner region of width O(γ̂)
in the neighbourhood of the singularity at (0, 1). The local streamfunction (3.2) can
be written Ψ ∼ (1 − Y )[−1 + Λ Im (z1/2)], where z = −X + i(1 − Y ), as |z| → 0.
In the presence of weak contamination, this becomes Ψ ∼ (1− Y )[−1 + Λ Im {(z +
id)1/2}], where d = γ̂/Λ2 (Harper 1992). This yields surface velocity and concentration
distributions, for X = O(γ̂),

ΨY (X, 1) ∼ 1−
(

1
2
γ̂φ
)1/2

, G(X) ∼
(
2γ̂/φ

)1/2
, φ =

[
1 +

(
X/d

)2
]1/2

+ (X/d),

(4.6a–c)

as shown in figure 9(a). For X � γ̂, where the free surface is compressed by
viscous forces G ∼ (γ̂/Λ)X−1/2; for −X � γ̂, where the free surface is clogged,
ΨY ∼ 1 − [γ̂/(2Λ)](−X)−1/2. These limits match onto the outer stick-slip flow of § 3
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Figure 10. Above the upper line (obtained using (5.1)) solutions of (2.23)–(2.25) do not exhibit
recirculating vortices; above the lower line the surface shear stress distribution is monotonic.

(denoted here by Ψ (0)(X,Y ), G(0)(X), say), provided that ahead of the monolayer,
with γ̂ � X = O(1), we use (2.25) to deduce that G ∼ γ̂/[1 − Ψ (0)

Y ]. Thus G → γ̂
exponentially fast over an O(1) distance ahead of the advancing monolayer. Upstream
of the leading edge, for −X � γ̂, the concentration G(0) is unaffected at leading order
by the contaminant.

A comparison between BEM results and the small-γ̂ asymptotics is shown in
figure 9 (b); the agreement is quite respectable. Convergence, resolution and round-off
constraints prevented the BEM code from tackling substantially smaller values of γ̂;
the asymptotic solution for γ̂ = 0.03 in figure 9(b) is a leading-order local solution
that is valid only near the stress peak, and it diverges as expected from the numerical
solution further from the regularized singularity. As γ̂ → 0, the surface shear stress
has a maximum value of (ΨYY )max ∼ 33/4Λ2/(23/2γ̂1/2) at X ∼ −γ̂/(31/2Λ2). The point
of maximum surface compression lies just downstream of this, at X ∼ γ̂/(31/2Λ2). For
γ̂ � 1 the contaminant has no significant effect either on the vortices (figure 4a) in
X > 0 or on the normal stress distribution (figure 8d).

5. Weak surface diffusion
Finally, we briefly consider the additional effect of weak surface diffusion, repre-

sented by D̂ in (2.23)–(2.25). If D̂ > 0, the eigenvalue relation (4.3) becomes

γ̂(ω2 − sin2 ω)− (2ω − sin 2ω)(1− ωD̂) = 0. (5.1)

If γ̂ = 0, the eigenvalues are 1/D̂ and 1
2
αn,

1
2
αn (n = 1, 2, . . .), where sin αn = αn

(as in Appendix C); thus the critical condition for the existence of vortices is that

D̂ < 2/Re (α1) ≈ 0.26675. BEM solutions of (2.23)–(2.25) for γ̂ > 0, D̂ > 0 closely

resemble those for D̂ = 0 in figure 8. We characterize them by plotting in figure

10 two boundaries in (γ̂, D̂)-parameter space: one across which the vortices vanish;
and one across which the stress distribution first becomes non-monotonic. As either
contaminant or diffusion increases in strength, the shear stress becomes monotonic
before the vortices vanish. This surprising result indicates that it is an abrupt change
in surface stress, rather than the presence of a large stress peak, which is sufficient to
drive the vortices.
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6. Discussion
We have investigated the Stokes flow in the neighbourhood of the leading edge of

a surfactant monolayer spreading on a thin fluid layer. There is an integrable stress
singularity at the monolayer tip which may be smoothed over short lengthscales
by either weak surface contamination (arising from a pre-existing monolayer) or
surface diffusion. The singularity, even when smoothed, can yield highly non-uniform
surface shear-stress distributions (e.g. figures 8b, 9b) and surface velocity gradients
(figures 8c, 9b) which cannot be described by conventional thin-film theory. In
contrast, the normal stress distribution (and hence the free surface shape) remains a
monotonic function that varies smoothly on an O(H∗) lengthscale, where H∗ is the
undisturbed film thickness (figures 6b, 8d). In conjunction with a strong gravitational
field that suppresses free-surface deformations, the non-uniform stress distribution at
the monolayer tip generates a train of Moffatt vortices in the fluid immediately ahead
of the monolayer (figure 4a) over an O(H∗) lengthscale.

Existing predictions of the length of a spreading monolayer are therefore in error
by at least O(H∗). For example, neglecting the effects of gravity and inertia, the dimen-
sional length at dimensional time t∗ of a localized, non-diffusing, planar monolayer

strip of total mass M∗ =
∫ L∗

0
Γ ∗ dx∗ is given at leading order by

L∗(t∗) ∼ L∗0(t∗) =
(
υH∗M∗A∗t∗/µ∗

)1/3
(6.1)

with υ = 12 (see the spreading-strip solution in Jensen & Grotberg 1992). To estimate
the importance of transient effects in this large-time approximation one can consider
the rate of decay of perturbations to the self-similar solution: with the location of
the symmetry line x = 0 fixed, these are O(t∗−2/3), essentially because the similarity
solution is independent of the time origin (Grundy & McLaughlin 1982; King &
Please 1986). We showed in §§ 2–3 and Appendix A that in an asymptotically uniform
approximation we must first include two additional corrections to (6.1), both larger
than O(t∗−2/3), namely

L∗(t∗) ∼ L∗0(t∗)− 2ϑH∗
(
µ∗L∗0t∗

σ∗0

)−1/3

− 1
4
ΥH∗hL. (6.2)

The second term on the right of (6.2), which scales like t∗2/9 for a strip, arises from
capillary effects at the shock associated with σ∗0 , the mean surface tension of the
film (Appendix A, figure 11; ϑ ≈ 0.39); this term depends on the capillary number
Ca = µ∗L∗0t∗/σ

∗
0 , which is typically small. The final term in (6.2) represents the effects

of the viscous stress singularity (reflected by Υ ≈ 0.84, computed using the Wiener–
Hopf technique; see (3.6) and Appendix D) coupled to the local free-surface shape,
which is determined here by capillary forces (so that hL = h0 ≈ 1.68, see § 2.3 and
Appendix A).

If restoring forces (such as gravity) are sufficiently strong for the free surface to be
flat (e.g. for sufficiently large G or t∗, § 2.2), the leading-order estimate of monolayer
length is instead given by (6.1) with υ = 9/4 (see (2.10)), with corrections given by
(6.2) with ϑ = 0 and hL = 1. If the film deforms appreciably under gravity (i.e. for
G = O(1), T = O(1)), L∗0(t

∗) must be determined by solving (2.6), (2.7) numerically;
we showed in § 2.3 that the final term in (6.2) applies to such transient (non-self-
similar) flows, where hL is the slowly varying film height at which lubrication theory
predicts that Γ = 0.

If, on a flat film, weak contaminant is present, represented by S∗∞ (the surface-
tension reduction due to contaminant), the deposited monolayer’s leading edge must
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be followed as a Lagrangian trajectory (Grotberg, Halpern & Jensen 1995), but if S∗∞ is
sufficiently small we may still use (6.1) to approximate the Eulerian flow. The evolving
role of contaminant at the monolayer tip is described by an inverse contaminant
capillary number γ̃ = S ∗∞/(µ

∗L∗0t∗), which rises in magnitude as the monolayer spreads.
At relatively early times, for which γ̃ � 1� L∗0/H

∗, the asymptotic solution of Harper
(1992) applies (see § 4.2) in conjunction with the stick-slip flow of § 3, and the surface
shear stress has a large peak over a very short O(γ̃H∗) lengthscale (as in figure 9).
Once γ̃ = O(1), the surface shear stress distribution becomes smoother, as shown by
the BEM solutions in figure 8. The vortices ahead of the monolayer vanish abruptly
once γ̃ > 0.445 if surface diffusion is negligible (§ 4), although they can exist even
when the surface shear stress distribution is monotonic, as long as it varies sufficiently
rapidly (figure 10). This surprising feature is enhanced when surface diffusion is
stronger. Once 1 6 γ̃ � L∗0/H

∗, lubrication theory applies throughout the flow (figure
2), and (2.12) may be used at the monolayer tip. Subsequently, contaminant effects
become increasingly important, since flow disturbances can ultimately spread rapidly
as a diffusive ‘compression wave’ through the contaminant monolayer (Grotberg et al.
1995), so that the lengthscale of the self-similar Eulerian flow becomes (H∗S∗∞t

∗/µ∗)1/2

(Bois & Panaiotov 1995).
Inertial effects are potentially important early in spreading, where they can generate

significant free-surface deformation near the monolayer tip, and they are considered
in detail in Part 2 of this study (Jensen 1998). There it is shown that two necessary
conditions for the stick-slip or BEM flows described herein to be valid approximations
are

t∗ � ρ∗H∗L∗0
µ∗

and γ̃R̃ ≡ ρ∗H∗S∗∞
µ∗2

� 1. (6.3a,b)

The latter condition (see figure 10 of Jensen 1998) is stringent, requiring extremely
low levels of contaminant (for a 1 mm layer of water, for example, we require
S∗∞ � 10−3 g s−2, which should be compared with the surface tension of clean water
in air σ∗0 ≈ 72 g s−2); if (6.3b) is violated, then inertially dominated flow at the
monolayer tip may evolve directly into a flow described by lubrication theory, and
the present Stokes flows do not arise.

When gravity is sufficiently strong, the flow structure is quite unlike that described in
previous studies of spreading insoluble monolayers (Gaver & Grotberg 1990; Jensen
& Grotberg 1992; Jensen 1995): there is a strong region of recirculation along the
length of the monolayer and a weaker gravity-driven flow over long lengthscales ahead
of the fluid layer (Appendix B). Flow disturbances due to the presence of the spreading
monolayer may be felt at a given location long before the surfactant reaches this point.
The return-flow structure arising when the free surface is constrained to be almost
flat (figure 1) also has important consequences for the transport of soluble surfactant
or a passive solute (Jensen & Grotberg 1993; Jensen, Halpern & Grotberg 1994).
The effect of suppressing free-surface deformations is to force the cross-sectionally
averaged flow rate at any location to be zero to leading order. Advection of surfactant
in the bulk becomes very weak compared to surface transport of material that has
adsorbed at the free surface. For highly soluble surfactants on thin, flat films, surface
tension gradients are therefore likely to play a minor role compared to horizontal
bulk diffusion or possibly shear dispersion.

The results of the present study for flows in rectangular domains can be used to
help interpret the role of the stress singularity in more complex flow geometries. This
is particularly important because such singularities present a signficant challenge to
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most numerical solution schemes, where they may have non-local effects (Floryan
& Czechowski 1995). Unless special precautions are taken, such as the inclusion
of ‘singular’ boundary or finite elements, the stress distribution cannot be properly
resolved. Such deficiencies appear to be present, for example, in the computations of
Bel Fdhila & Duineveld (1996), which show peaks in vorticity and pressure at the
tip of the stagnant cap at the rear of a bubble across a range of Reynolds numbers,
and in the computations of Pawar & Stebe (1996), which indicate the existence of a
probable stress singularity associated with the abrupt change in boundary conditions
at phase boundaries in monolayers covering bubbles in extensional flows. As we
have seen in detail here, the introduction of weak contaminant or diffusion provides
a simple means for obtaining physically self-consistent solutions (see also Cuenot,
Magnaudet & Spennato 1997).

D. H. acknowledges the support of the NSF EPSCoR in Alabama.

Appendix A. Weak restoring forces: a freely deforming interface
If G = 0 in (2.6), so that the only restoring force acting on the free surface is surface

tension, the leading-edge condition (2.7) is replaced by an advancing discontinuity in
height and shear stress (Borgas & Grotberg 1988; Park 1992),

h =

{
2
1,

Γ =

{
− 1

2
LT (X̄ − L) for X̄ → L(T )−

0 for X̄ > L(T ),
(A 1)

the analogue of (2.11). Since the monolayer advances slowly, with speed V = εLT
(i.e. dimensional speed V ∗ = S∗V/µ∗), the jump in film height is smoothed by surface

tension over a long x̃-lengthscale of O(Ca−1/3) (Jensen & Grotberg 1992), where the
local capillary number Ca ≡ V/S = V ∗µ∗/σ∗0 is small since S > 1 and V = O(ε).

Setting x = (L/ε) + (x̂/ε̂), Γ̃ = Γ̂ /ε̂, where ε̂ = Ca1/3, a thin-film approximation of
(2.1)–(2.5) yields, for the capillary transition region

1
6
h3hx̂x̂x̂ = h− 2, 1

2
h2Γ̂x̂ = h− 3 (x̂ < 0), (A 2)

1
3
h3hx̂x̂x̂ = h− 1, Γ̂ = 0 (x̂ > 0) (A 3)

(Jensen & Grotberg 1992). Since this region is short compared to the length of the
monolayer, variations in surface tension are small in comparison to its large mean
value.

The solution of (A 2)–(A 3) is shown in figure 11. The film height decreases mono-
tonically from 2 to h0 ≈ 1.6839 in x̂ < 0, and has a wavy structure as it falls from
h0 to h = 1 far downstream. For x̂ → −∞, the surfactant distribution has the form
Γ̂ ∼ − 1

2
x̂+ ϑ where ϑ ≈ 0.3896, implying that capillarity shortens the monolayer by

an x̃-distance 2ϑ/ε̂ (see (6.2)). Across x̂ = 0, this thin-film approximation predicts
jumps in shear stress, pressure gradient (the jump in hx̂x̂x̂ in figure 11b) and velocity
profile (given by ψ̂ → ψ±(y; h0) as x̂→ 0±; see (2.21) and figure 3).

The Navier–Stokes problem over lengthscales shorter than O(Ca−1/3), in the domain
−∞ < x̃ < ∞, 0 6 y 6 h0, is then readily obtained using a similar procedure to that
in § 2.2.1, taking as its upstream and downstream conditions the local solutions of
(A 2), (A 3) across x̂ = 0, which is equivalent to the conditions described in § 2.3.
Normal stresses in the Navier–Stokes problem generate corrections to the film height
which arise formally at O(ε̂3), which smooth the jump in the third derivative of h
across x̂ = 0. These would therefore be almost imperceptible in Stokes flows, but an
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Figure 11. The capillary transition region, in the small-capillary-number limit, given by lubrication

theory (A 2), (A 3): (a) Γ̂ (x̂) and film height h(x̂); (b) −p̂(x̂) = hx̂x̂ and the surface shear stress −Γ̂x̂.
At x̂ = 0, hx̂ ≈ −0.3091 and hx̂x̂ ≈ −0.3262.

inertially-generated Reynolds ridge (see Jensen 1998) may be observable near h ≈ 1.7
if the monolayer spreads sufficiently rapidly.

Appendix B. The gravity-driven flow ahead of the monolayer
Ahead of the monolayer, where Γ = 0 in X > L(T ), hT = 1

3
G(h3hX)X from (2.6a).

Perturbations to the film height of O(1/G), driven by the monolayer, diffuse quickly
ahead of it over a lengthscale (GT )1/2. We assume (GT )1/2 � L(T ), and introduce an

outer variable X = G1/2Z , and again expand setting h ∼ 1 + ĥ(Z,T ), |ĥ| � 1, to give

ĥT = 1
3
ĥZZ . At the upstream end of this region, ĥ(0, T ) = H(T )/G, to match with

the outer limit of the flow beneath the monolayer (2.8a). We seek similarity solutions

dependent on the variable Ξ = Z/T 1/2 of the form ĥ(Z,T ) = G−1H(T )H(Ξ). H(T )

must be found from a global mass balance of fluid. Assuming
∫ L

0
Γ0 dX = M =

constant and using (2.8a), we have

0 = G
∫ ∞

0

(h− 1) dX = G
{∫ L

0

(h− 1) dX +

∫ ∞
L

(h− 1) dX

}
(B 1)

∼
[
H(T )L(T )− 3

2
M
]

+H(T )(GT )1/2

∫ ∞
0

H(Ξ) dΞ. (B 2)

Since (GT )1/2 � L(T ), the dominant balance must be H(T ) = O(M/(GT )1/2).
The film depth in X > 0 can then be written as a composite expansion over long
lengthscales for G � 1,

h(X,T ) ∼ 1 +
3

2G

[
M

(
3

πGT

)1/2

exp

{
− 3X2

4GT

}
− Γ0

]
, (B 3)
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where Γ0 is a fixed-mass solution of (2.9). The ‘kink’ in h near X = L (as Γ0 → 0)
may be smoothed using numerical solutions such as that shown in figure 6(b).

Appendix C. Matched eigenfunction expansions
Let {αn}∞n=1 be the set of roots in the upper right-hand quadrant of the complex

plane of sin α = α, and {βn}∞n=1 be the set of roots of sin β + β = 0. We define the
following basis functions:

E(Y ; λ) = (1− Y )(sin λ) sin λY − λY sin [λ(1− Y )] , (C 1)

F(Y ; λ) = 2λ [λ cos λ(1− Y )− (sin λ) cos λY ] . (C 2)

Writing D ≡ ∂Y , these satisfy (D2 +λ2)E = F , (D2 +λ2)F = 0, so that (D2 +λ2)2E = 0,
and E(0; λ) = 0, DE(0; λ) = 0, E(1; λ) = 0. Note that E

(
Y ; λ

)
= E(Y ; λ), F

(
Y ; λ

)
=

F(Y ; λ), where a bar denotes complex conjugate, and that

D2E(1; λ) = λ[2λ− sin 2λ], DE(1; λ) = λ2 − sin2 λ. (C 3)

It follows that f(X,Y ; λ) = E(Y ; λ)e±λX is a separable (Fadle–Papkovitch) eigen-
function of the biharmonic equation ∇4f = 0, satisfying f(X, 0) = 0, fY (X, 0) = 0,
f(X, 1) = 0. If f represents a streamfunction, then ∇2f = F(Y ; λ)e±λX represents the
corresponding negative vorticity.

The streamfunction satisfying (2.23), (2.24), (3.1) can be written

Ψ (X,Y ) =


∞∑

n=−∞
AnE(Y ; λn)e

−λnX, X > 0

Y 3 − Y 2 +

∞∑
n=−∞

BnE(Y , µn)e
µnX, X < 0

(C 4)

where the λn satisfy sin 2λ = 2λ, i.e. λn = 1
2
αn for n = 1, 2, 3, . . . , the µn satisfy

sin2 µ = µ2, i.e. µ2m−1 = βm, µ2m = αm for m = 1, 2, 3, . . . , and where λ−n = λn, µ−n = µn,
A−n = An, B−n = Bn, ensuring that Ψ is real. The corresponding vorticity distribution
is given by ω = −∇2Ψ , where

ω(X,Y ) =


−

∞∑
−∞

AnF(Y ; λn)e
−λnX, X > 0,

−(6Y − 2)−
∞∑
−∞

BnF(Y , µn)e
µnX, X < 0.

We follow Schultz & Gervasio (1990) in constructing a vector eigensystem, by
defining

x(Y ; λ) =

(
E(Y ; λ)
F(Y ; λ)

)
, M =

(
D2 −1
0 D2

)
, so M · x = −λ2x.

Under the inner product 〈x, y〉 =
∫ 1

0
x · y dY , the adjoint system, for which 〈x,My〉 =

〈M†x, y〉, is

x†(Y ; λ) =

(
F(Y ; λ)
E(Y ; λ)

)
, M† =

(
D2 0
−1 D2

)
, so M† · x† = −λ2

x†.

Then for any eigenvalue pair λm and λn, (λ2
n − λ2

m)
〈
x (Y ; λn) , x

† (Y ; λm
)〉

= 0.
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At X = 0 we match the vectors (Ψ,−ω)T and (ΨX,−ωX)T , so that

∞∑
−∞

Bnx(Y ; µn) + R =

∞∑
−∞

Anx(Y ; λn),

∞∑
−∞

µnBnx(Y ; µn) =

∞∑
−∞
−λnAnx(Y ; λn),

where R = (Y 3 −Y 2, 6Y − 2)T . Taking the inner product of each sum with x†(Y ; λm)
and eliminating Am yields an infinite linear system,

∞∑
−∞
Bn(λm + µn)

〈
x(Y ; µn), x

†(Y ; λm)
〉

= −λm
〈
R, x†(Y ; λm)

〉
.

This is truncated, and the resulting linear system is solved to find the Bn and hence
the An. Because of the singularity, both expansions for the streamfunction fail to
converge very close to X = 0, although the estimates of the constants in (3.6)
converged slowly to their exact values as N was increased. The numerical scheme was
limited by the accuracy with which the integrals of the higher-order eigenfunctions
could be computed. With 128 eigenfunctions, Λ0 ≈ 1.6, and Θ0 ≈ −1.18, in reasonable
agreement with (3.6). Figure 4 was plotted using N = 64.

Appendix D. Wiener–Hopf solution of the leading-edge Stokes flow
We sketch here the application of the Wiener–Hopf technique to the solution of

(2.23), (2.24), (3.1). Details of the method may be found in Noble (1958), Richardson
(1970, although there is an error in his calculation of the stress singularity, see for
example Tanner & Huang 1993), Porter & Dore (1974) and Kim & Chung (1984). The
singularity at the monolayer’s leading edge is as given by (3.1)–(3.3); the constants Λ,
Υ and Θ (see (3.2)–(3.5)) are to be determined.

Define the Fourier transform of the streamfunction Ψ (X,Y ) and its inverse to be

Ψ̂ (ω, Y ) =

∫ ∞
−∞
Ψ (X,Y )eiωX dX, Ψ (X,Y ) =

1

2π

∫ ∞
−∞
Ψ̂ (ω, Y )e−iωX dω.

The biharmonic equation becomes Ψ̂Y Y Y Y − 2ω2Ψ̂Y Y + ω4Ψ̂ = 0, so the solution
satisfying Ψ̂ (ω, 0) = 0, Ψ̂Y (ω, 0) = 0, Ψ̂ (ω, 1) = 0 is Ψ̂ (ω, Y ) = A(ω)F̂(Y ;ω) where

F̂(Y ;ω) ≡ (1− Y ) sinhω sinhωY − ωY sinh{ω(1− Y )}, (D 1)

so that F̂Y (1;ω) = ω2 − sinh2 ω and F̂Y Y (1;ω) = ω(2ω − sinh 2ω). We re-state (3.1)
as

ΨY (X, 1) = eεX (X < 0), ΨY Y (X, 1) = 0 (X > 0), (D 2)

introducing some small, positive ε which will tend to zero at the end of the calculation,
to ensure that Fourier transforms can be properly defined. We define the half-range

transforms Ψ̂+(ω, Y ) =
∫ ∞

0
Ψ (X,Y )eiωX dX, Ψ̂−(ω, Y ) =

∫ 0

−∞Ψ (X,Y )eiωX dX, so

that Ψ̂ (ω, Y ) = Ψ̂+(ω, Y ) + Ψ̂−(ω, Y ), where Ψ̂+ is analytic for all ω, and certainly
for ω ∈ R+ ≡ {ω : Im ω > −ε}, and Ψ̂− is analytic in R− ≡ {ω : Im ω < ε}. Thus
from (3.1), (3.3), using standard asymptotic properties of Fourier integrals,

Ψ̂−Y Y (ω, 1) ∼ Λω−1/2e−iπ/4Γ ( 1
2
), |ω| → ∞, Im ω < 0, (D 3)

Ψ̂+
Y (ω, 1) ∼ iω−1 − Λω−3/2e3πi/4Γ ( 3

2
), |ω| → ∞, Im ω > 0. (D 4)
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The boundary conditions (D 2) become Ψ̂−Y (ω, 1) = 1/(ε+ iω), Ψ̂+
Y Y (ω, 1) = 0, so that

Ψ̂+
Y (ω, 1) = A(ω)

[
ω2 − sinh2 ω

]
− (ε+ iω)−1, Ψ̂−Y Y (ω, 1) = A(ω)ω [2ω − sinh 2ω] .

(D 5)
Eliminating A(ω) from (D 5),

Ψ̂+
Y (ω, 1) + Ψ̂−Y Y (ω, 1)B(ω) = − 1

ε+ iω
where B(ω) =

sinh2 ω − ω2

ω(2ω − sinh 2ω)
. (D 6)

We then set B(ω) = B+(ω)B−(ω), where B±(ω) is regular and non-zero in R±: the
appropriate decomposition is

B±(ω) = ∓ 2

(5± 3)
e±N(ω)

∞∏
n=1

(1± ω/αn)(1∓ ω/αn)(1± ω/βn)(1∓ ω/βn)
(1± 2ω/αn)(1∓ 2ω/αn)

(Porter & Dore 1974), where {±αn}n=∞n=0 and their complex conjugates {±αn} are the
roots of sinh α = α, with 0 < arg(αn) <

1
2
π and |αn| < |αn+1|, and {βn}∞n=0 are the

corresponding roots of sinhβ + β = 0. The exponential terms are required to ensure
convergence as ω →∞, so that N(ω) = (2iω/π) log 2 and then

B+(ω) ∼ −eiπ/4/(2
√

2 ω1/2) as ω →∞, arg(ω) < π, (D 7)

a result which can be obtained by exploiting the generalized Gamma (or factorial)
function defined by Smith-White & Buchwald (1964); see for example Foote &
Buchwald (1985) and references therein. We note that B−(ω) = −4B+(ω), B−(−ω) =
−4B+(ω), B−(ω) = B−(−ω) and B−ω (0) = 4B+

ω (0) = −iΩ where

Ω =
2 log 2

π
+ i

∞∑
n=1

{(
1

αn
− 1

αn

)
−
(

1

βn
− 1

βn

)}
≈ 0.20943. (D 8)

This is in accordance with Kim & Chung (1984), who computed 2Ω as 0.4188.
Thus, from (D 6)

Ψ̂+
Y (ω, 1)

B+(ω)
+ Ψ̂−Y Y (ω, 1)B−(ω) = − 1

ε+ iω

1

B+(ω)
= C(ω), (D 9)

say. We then seek the decomposition C(ω) = C+(ω) +C−(ω), where C±(ω) is regular
in R±. This is obtained using a standard contour integral method (Noble 1958). The
residue from the single pole at ζ = iε gives C−(ω) = i(ω − iε)−1/B+(iε) ∼ −4i/ω as
ε→ 0, so from (D 9), C+(ω)B+(ω) = (i/ω)

[
1 + 4B+(ω)

]
. It follows from (D 9) that

Ψ̂+
Y (ω, 1)

B+(ω)
− C+(ω) = C−(ω)− Ψ̂−Y Y (ω, 1)B−(ω) = H(ω), (D 10)

for some analytic, bounded function H(ω); standard arguments invoking Liouville’s
theorem imply that H(ω) = 0, so that Ψ̂+

Y (ω, 1) = B+(ω)C+(ω) and Ψ̂−Y Y (ω, 1) =
C−(ω)/B−(ω). Thus (D 10) and (D 5) yield two representations for A(ω), each of
which is the analytic continuation of the other and regular in R± respectively. In the
limit ε → 0, both representations satisfy A(ω) ∼ 3iω−5(1 + iΩω) as ω → 0, where Ω
is given by (D 8), and in this limit

Ψ̂+
Y (ω, 1) =

i

ω

[
1 + 4B+(ω)

]
∼ Ω, Ψ̂−Y Y (ω, 1) = −4i

ω

1

B−(ω)
∼ −4i

ω
(1 + iΩω).

(D 11)
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By considering the limit |ω| → ∞, with Im ω > 0, it follows from (D 3), (D 4),
(D 7), (D 11) that Λ = (8/π)1/2 in agreement with Kim & Chung (1984). Also, from
(3.4) and (D 11)

Υ = lim
ε→0

lim
X→−∞

[∫ 0

X

(
ΨYY (X, 1)− 4eεX

)
dX

]
= lim

ε→0
lim
ω→0

[
Ψ̂−Y Y (ω, 1)− 4

ε+ iω

]
= 4Ω,

where ω → 0 with Im ω < 0. Likewise, using (3.5) one finds that

−Θ = lim
ω→0

[
Ψ̂Y Y Y (ω, 0) +

12i

ω

]
= 24iB+

ω (0) = 6Ω.
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